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SUMMARY

The parallel solution of the incompressible Navier–Stokes equations coupled with the energy equation
is considered. For turbulent �ows, the k=� model together with a modi�ed wall-function concept is used.
The iterative process requires the fast solution of advection–di�usion reaction and Oseen-type problems.
These linearized problems are discretized using stabilized �nite element methods. We apply a coarse–
granular iterative substructuring method which couples the subdomain problems via Robin-type interface
conditions. Then we apply the approach to the simulation of indoor air �ow problems. Copyright ?
2002 John Wiley & Sons, Ltd.
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1. MATHEMATICAL MODEL

Let �⊂Rd, d=2; 3 be a bounded polyhedral domain. As the basic mathematical model we
consider the (non-dimensional) incompressible, non-isothermal Reynolds averaged Navier–
Stokes equations (RANS) with the eddy-viscosity hypothesis. Buoyancy e�ects are taken into
account using the Boussinesq approximation. We seek a velocity �eld u, a pressure p, and a
temperature � as solutions of the coupled non-linear system

@tu −∇ ·(2�eS(u)) + (u ·∇)u+∇p=−��g
∇ ·u= 0

@t�+ (u ·∇)�−∇ ·(ae∇�) = q̇V=cp
(1)

with S(u):= 1
2(∇u+∇uT), isobaric volume expansion coe�cient �, gravitational acceleration

g, volumetric heat source q̇V and speci�c heat capacity (at constant pressure) cp. Furthermore,
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Figure 1. In�ow and out�ow regions at an opened window.

we introduce the e�ective viscosities �e=� + �t and ae=a + at with kinematic viscosity �,
turbulent viscosity �t , thermal di�usivity a and turbulent thermal di�usivity at .
For turbulent �ows we apply the k=� model [1, 2]. Turbulent e�ects are modelled as

additional turbulent viscosity �t =c�k2=� with c�=0:09 and thermal di�usivity at =�t=Prt , using
the turbulent kinetic energy k and turbulent dissipation �. The latter quantities are solutions
of additional di�usion–advection reaction (ADR) equations

@tk + (u ·∇)k −∇ ·(�k∇k) = Pk +G − �
@t�+ (u ·∇)�−∇ ·(��∇�) + C2�2k−1 =C1�k−1(Pk +G)

(2)

with constants C1=1:44, C2=1:92, Ct =0:8, Prt =0:9, Prk=1:0, Pr�=1:3, e�ective viscosities
�k=�+ �t=Prk , ��=�+ �t=Pr�, production and buoyancy terms

Pk :=2�t|S(u)|2; G :=Ct�atg ·∇�
The laminar case is recovered if we set k ≡ 0 and skip Equations (2).
Depending on the sign of u ·n, the boundary is divided into wall zones �0(u), inlet zones

�−(u) and outlet zones �+(u). In Figure 1 we present the example of an opened window.
Using �=2�eS(u), we set

(�− pI)n=�nn on �N⊂�− ∪�+; u=ub on �D⊂�− ∪�+ (3)

with �D∩�N=∅ and ��D ∪ ��N= ��− ∪ ��+. On �0, we prescribe either a no-slip condition or the
tangential stresses and the normal velocity

(i) u=0 or (ii) (I − n⊗ n)2�eS(u)n=�t ; u ·n=0 on �0 (4)

In this paper, we consider only the case �D=∅ and replace condition (4)(i) with (ii),
cf. Section 2. For � we require

�(�− �in) + (1− �)ae∇� ·n=0 on ��− ∪ ��+; ae∇� ·n= q̇0cp on �0 (5)
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Figure 2. Domain decomposition in the boundary layer region.

Here we denote by �=�(�−) the characteristic function of ��−. Note that the so-called neutral
zone �−(u)∩�+(u), cf. Figure 1, is not a priori known, see also Example 2 in Section 5.

2. DOMAIN DECOMPOSITION FOR NEAR WALL LAYERS

In order to avoid an expensive spatial resolution of boundary layer regions and to circumvent
adjusting c� there we apply, for turbulent �ows, the concept of wall functions in the vicinity
�� of a wall �0 containing at least the so-called viscous sublayer, cf. Figure 2. We apply an
overlapping domain decomposition method (DDM).

(I) Outer solution: First we solve the RANS (1) in � with boundary conditions (4), (5)
where the r.h.s. �t and q̇0 on walls �0=�W have to be determined, cf. step II.
Then we solve the k=�-equations (2) in �\��. Dirichlet data are prescribed on �−(u)
and on the arti�cial boundary ��=@��∩�. A do-nothing condition is speci�ed on
�+(u). More precisely, we set

Zone �−(u) �� �+(u)

k k=1:5(Tuu)2 k=c−1=2� U 2
∗ �k∇k ·n=0

� �=c3=4� k3=2=L �=U 3
∗ =(	y) ��∇� ·n=0

with appropriate constant 	 and problem dependent data L and Tu. (The e�ective viscos-
ity �e in (1) is modi�ed in the wall layer region �� according to step II. Alternatively,
one can solve (2) in � using homogeneous Neumann conditions on �0 for k and �,
cf. [1].)
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(II) Compute boundary layer solution in �� and match solutions: We introduce a wall-
�tted co-ordinate system (x; y) with y being the distance from the wall �W. Following
[3], we simplify the RANS (1) under standard assumptions in Prandtl’s boundary layer
theory and using modi�ed viscosities in ��

�e=�max
(
1;

Re
Remin

)
; ae=

�
Pr
max

(
1;

Pr
PrBLt

Re
Remin

)

with local Reynolds number Re(x; y)=‖u(x; y)‖y=�, Pr=0:71, PrBLt =1:16, and an ap-
propriate constant Remin. Then we seek the near wall layer approximation, for each
x∈�W, as the solution (uBLx ; �BL) of the boundary value problems

− d
dy

(
�e
duBLx
dy

)
= ��BLgx

− d
dy

(
ae
d�BL

dy

)
=0

uBLx |y=0=0; �BL|y=0 = �w

(6)

gx denoting the tangential component of g, with matching conditions

uBLx |y=y�=ux(y�); �BL|y=y�=�(y�) (7)

Then we replace the boundary condition (7) with

�e
duBLx
dy
|y=0=R; ae

d�BL

dy
|y=0=S (8)

Now we solve the initial value problem (6), (8) using a shooting method for (R; S) until
conditions (7) are ful�lled. Then we �nd the r.h.s. �t =U 2

∗ u=||u|| and q̇0 of the unknown wall
boundary conditions for the outer solution by setting U 2

∗ =R and q̇0=cpS.
In the special case of a vanishing buoyancy force ��BLgx in �� on the r.h.s. of the �rst

equation of (6), we can avoid the shooting technique. We recover the standard wall functions
(modi�ed according to Reference [3]) in the viscous sublayer and in the log-layer as analytical
solutions of (6), (7) using standard scaled variables

y+=yU∗=�; u+=uBLx =U∗; �+=cpU∗(�0 − �BL)=q̇0

The described DDM is realized as an iterative method within the discretization, decoupling,
and linearization of the full model. A computational algorithm has to control that ��, being
discretized with mesh points with minimal distance to �0, belongs to the log-layer, see also
Figure 2.
The mathematical foundation of the approach is open. Some ideas on how to proceed for

the much simpler advection–di�usion problem are given in Reference [4].
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3. DISCRETIZATION, DECOUPLING AND LINEARIZATION

We are mainly interested in the long-term integration of the model (1), (2) and apply the
backward Euler scheme for the semidiscretization in time. On a partition {tm}Mm=0 of [0; T ]
with t0=0; tM=T , we use the abbreviation Fm=F(tm)≡F(tm ; ·) for a function F . The time
derivative is approximated as

@tF(tm)≈ @mt F=(Fm−Fm−1)=	m

with time step 	m= tm − tm−1. We arrive at the semidiscrete system

@mt u−∇ ·(2�me S(um)) + (um ·∇)um +∇pm =−��mg
∇ ·um =0

@mt �+ (u
m ·∇)�m −∇ ·(ame ∇�m) = (q̇)Vm=cp

@mt k + (u
m ·∇)km −∇ ·(�mk ∇km) = Pmk +Gm − �m

@mt �+ (u
m ·∇)�m −∇ ·(�m� ∇�m) + C2

(�m)2

km
=C1

�m

km
(Pmk +G

m)

(9)

Now we apply a block Gauss–Seidel method for the iterative decoupling and linearization
of the system (9). A second upper index denotes the iteration step. Furthermore, we replace
@mt F by @̃tmF :=(Fm; i − Fm−1)=	m. Given um;0, pm;0, �m;0, km;0, �m;0 as the solutions of the
previous time step, the linearization cycle (in each time step) reads:

(A) Initialization: Set itdlc← 1.
(B) Set i← itdlc and update turbulent viscosity �mt ← �mt (km; i−1; �m; i−1). Update U∗; q̇0 ac-

cording to Section 2 using um; i−1 and �m; i−1.
(C) Update �me and solve the linearized Navier–Stokes equations

@̃tmu+ (um; i−1 ·∇)um; i −∇ ·(2�me S(um; i)) +∇pm; i =−��m; i−1g
∇ ·um; i =0

(D) Update ame and solve the �-equation

@̃tm�+ (um; i ·∇)�m; i −∇ ·(ame ∇�m; i)=(q̇V)m=cp

(E) Update �mk , P
m
k , G

m using um; i, �m; i and solve the k-equation

@̃tmk + (um; i ·∇)km; i −∇ ·(�mk ∇km; i)=Pmk +Gm − �m; i−1

(F) Update Pmk , G
m, �m� using um; i, �m; i, km; i and solve the �-equation

@̃tm�+ (um; i ·∇)�m; i −∇ ·(�m� ∇�m; i) + C2
�m; i−1

km; i
�m; i=C1

�m; i−1

km; i
(Pmk +G

m)
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(G) Stopping criterion for linearization cycle: if itdlc¡maxdlc and if stopping criteria for
{um; ii }i, {�m; ii }i, {km; ii }i, {�m; ii }i are not yet ful�lled, then set itdlc← itdlc + 1 and goto
(B). Otherwise goto next time step.

The iterative scheme (A)–(G) requires the solution of two basic problems. First, the linearized
equations for �, k and � are ADR problems with non-constant viscosity of the general form:

Lu≡ −∇ ·(�∇u) + (b ·∇)u+ cu=f in �̃

u= g on �̃D

�∇u ·n= h on �̃N

(10)

For � we set �̃=�, �̃D=�−, �̃N=�0 ∪�+, h|�0 = q̇0=cp, h|�+ =0. For k and � set �̃=�\��,
�̃D=(�−∩@�̃)∪�� with appropriate g and �̃N=�+ with h=0. The other data from (D)–(F)
are given in the following table:

Equation u � b cu f

For � �m; i ame um; i �m; i=	m q̇V=cp + �m−1=	m

For k km; i �mk um; i km; i=	m (Pmk +G
m)− �m; i−1

+km−1=	m

For � �m; i �m� um; i C2(�m; i−1=km; i)�m; i C1(�m; i−1=km; i)(Pmk +G
m)

+�m; i=	m +�m−1=	m

Later on, we simply write � and omit the indices of viscosities and production terms.
The linearized Navier–Stokes equations are of Oseen-type with a positive reaction term and

non-constant viscosity

LO(a; u; p)≡−∇ ·(2�S(u)) + (a ·∇)u+ cu+∇p= f in �

∇ ·u=0 in �

(�− pI)n= �nn on �− ∪�+

(I − n ⊗ n)2�eS(u)n=�t ; u ·n=0 on �0

(11)

Comparison with step (C) of the linearization cycle yields u=um; i, �=�e, a=um; i−1, c=1=	m,
p=pm; i, f=−��m; i−1g+ cum−1.
For the �nite element discretization of (10)–(11) we assume an admissible triangulation

Th={K} of the Lipschitz domain � and de�ne �nite element subspaces X lh ≡{v∈C( ��) | v|K ∈

l(K) ∀K∈Th}, l∈N. Furthermore, (· ; ·)S denotes the inner product on some S.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1527–1538
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For the ADR problem (10), for simplicity with g=0 on �D, we apply the Galerkin-FEM
with SUPG-stabilization:

�nd u∈Vh = {v∈X lh | v|�D =0} s:t:: bs(u; v)=ls(v) ∀v∈Vh
bs(u; v) = (�∇u;∇v)� + ((b ·∇)u+ cu; v)� +

∑
T∈Th

(�TLu; (b ·∇)v)T

ls(v) = (f; v)� + (h; v)�N +
∑
T∈Th

(�Tf; (b ·∇)v))T
(12)

with appropriate parameter set {�T}T , see Reference [5]. The SUPG solutions may su�er from
local crosswind oscillations in layers; this is, in particular, the case for the temperature �eld
�. Furthermore, (unphysical) negative values of k or � can occur. As a remedy, we add in a
consistent way crosswind di�usion thus leading to the (non-linear) shock-capturing method,
for details see Reference [1].
For the Oseen-problem (11), we de�ne the discrete spaces Vh×Qh=(X rh )d×X s

h with r; s∈N.
The Galerkin-FEM requires the (bi)linear forms

A(U;V )=a(u; v) + b(v; p)− b(u; q); L(V )=L(v)

with U=(u; p), V =(v; q) and b(v; p)=− ∫� p(∇ ·v) dx. Furthermore, set
a(u; v) = (2�S(u);∇v)� + ((a ·∇)u+ cu; v)� + ((pI − n⊗ n�)n; v)�0
L(v) = (f ; v)� + (�nn; v)�− ∪ �+ + (�t ; v)�0

When using equal order ansatz functions r=s, the discrete Babuska–Brezzi condition is not
satis�ed. This problem is circumvented using a pressure (PSPG) stabilization. In addition,
divergence and SUPG-stabilizations are used to deal with dominating �rst-order terms. More
precisely, we set

As(U;V ) =A(U;V ) +
∑
T∈Th

[(LO(a; u; p); �T1u(a ·∇)v+ �T1p∇q)T + �T2u(∇ ·u); (∇ ·v)T]

Ls(V ) =L(V ) +
∑
T∈Th

(f ; �T1u(a ·∇)v+ �T1p∇q)T

Finally, the stabilized problem to the Oseen equation (11) reads:

�nd U=(u; p)∈Vh×Qh s:t: As(U;V )=Ls(V ) ∀V∈Vh×Qh (13)

For the choice of the stabilization parameters �T1u, �
T
2u, and �

T
1p see Reference [5].

4. DOMAIN DECOMPOSITION OF THE LINEARIZED PROBLEMS

A non-overlapping domain decomposition method with Robin interface conditions is applied
to the basic linearized problems (10), (11). Consider a non-overlapping partition of � into
convex, polyhedral subdomains being aligned with the �nite element mesh (FEM), i.e.

��=
N⋃
k=1

��k ; �k ∩�j=∅ ∀k �=j; ∀K∈Th ∃k: K⊂�k

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1527–1538
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Furthermore, set �k :=@�k\@�, �jk :=@�j∩@�k , j �=k, where �kj is identi�ed with �jk . Assume,
for simplicity, that the partition is stripwise.
For the (continuous) ADR problem (10) the DDM reads: for given unk from iteration step

n on each �k , seek (in parallel) for un+1k

Lun+1k =f in �k

un+1k =0 on �D∩@�k
�∇un+1k ·nk = h on �N∩@�k

together with the interface conditions

�k(un+1k ) = ��k(unj ) + (1− �)�k(unk ) on �jk ; j=1; : : : ; N; j �=k
with a relaxation parameter �∈(0; 1]. The interface function is speci�ed as

�k(u)=�∇u ·nk + (− 12b ·nk + zk)u (14)

Let Vk; h, bsk and l
s
k denote the restrictions of Vh, b

s and ls to �k , respectively. Wkj; h is the
restriction of Vh to the interface part �kj. Furthermore, 〈· ; ·〉�kj is the inner product in L2(�kj)
or, whenever needed, the dual product in (Wkj; h)∗ ×Wkj; h. The fully discretized DDM reads
for k=1; : : : ; N :
Parallel computation step: �nd un+1k ∈Vk; h such that ∀vk ∈Vk; h

bsk(u
n+1
k ; vk) + 〈(− 12b ·nk + zk)un+1k ; vk〉�k=lsk(vk) +

∑
j(�= k)
〈�njk ; vk〉�kj

Communication step: for all j �=k, update the Lagrangian multipliers
〈�n+1kj ; 
〉�kj=〈�(zk + zj)un+1k − ��njk + (1− �)�nkj; 
〉�kj ∀
∈Wkj; h

The analysis of the method, given in Reference [6], can be easily extended to the case of
non-constant viscosity �: The algorithm is well-posed if zk=zj¿0. The sequences {unk}n,
k=1; : : : ; N converge strongly to the restrictions of the global discrete solution to �k w.r.t.
the stabilized energy norm induced by the symmetric part of bsk (· ; ·).
An a posteriori estimate (given in Reference [6] for two subdomains) allows to control the

convergence on subdomains via jumps of discrete DD solutions across the interface. Besides
this estimate allows the following design of the interface function:

zk = 1
2 |b ·nk |+ Rk

Rk ∼ �minH

[
1 +H

√
cmax
�min

+ min

(
‖b‖max√
(�c)min

;
H‖b‖max
�min

)]
(15)

where H is the diameter of the interface. Equation (15) is compatible with the vanishing
viscosity limit �→ 0. Moreover, it is shown in Reference [6] that (15) is surprisingly sharp
w.r.t. data and allows a considerable acceleration of convergence.
For the Oseen problem (11) we use the abbreviation �t; k :=I−nk⊗nk . Then the DDM is de-

�ned as follows: for given (unk ; p
n
k ) from step n on each �k , seek (in parallel)
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for (un+1k ; pn+1k )

LO(a; un+1k ; pn+1k ) = f in �k

∇ ·un+1k =0 in �k

(�n+1k −pn+1k I)nk = �nnk on @�k ∩(�− ∪�+)
�t; k�n+1k nk=�t ; −un+1k ·nk =0 on @�k ∩�0

together with the interface conditions

�k(un+1k ; pn+1k )=��k(unj ; p
n
j ) + (1− �)�k(unk ; pnk ) on �jk

�∈(0; 1] is again a relaxation parameter. The interface function is given by
�k(u; p)=�∇u ·nk − pnk + (− 12a ·nk + zk)u (16)

with acceleration parameter zk .
The corresponding parallel algorithm can be formulated (in weak form) similarly as for

the scalar case. For this DD algorithm (and certain variants of it), a similar a priori and
a posteriori analysis is available as brie�y described for the scalar problem (10). In particular,
the interface function zk in (16) has the same structure as in (15). For details, we refer to
References [7, 8].

5. APPLICATION TO ROOM-AIR FLOW SIMULATION

We implemented the stabilized FEM of Section 3 within our research code Parallel NS.
Piecewise linear ansatz functions are used for all unknowns (l=r=s=1) on unstructured
tetrahedral (resp. triangular) meshes in 3D (resp. 2D). The DDM of Section 4 is parallelized
using a master=slave paradigm in the PVM con�guration; it has been implemented on a cluster
of Linux workstations connected by Ethernet. No coarse-grid solver is used so far; hence, the
application is restricted to the coarse-granular case.
The validation of the approach to laminar �ows has been considered e.g. in References

[7, 8]. For the turbulent case, cf. Sections 1 and 2, the validation of the approach for typical
test cases (e.g. the standard 2D Cheesewright test in a closed cavity or a 3D �ow in a cavity
with large opening) is given in Reference [9, Chapter 4], Here we present two examples.

Example 1
Natural convection 3D closed cavity. This is a benchmark problem with Rayleigh number
Ra=2:3× 1010 in the cubic box �. The problem data, the surface mesh, and the induced vector
and temperature �elds are shown in Figure 3. Here we want to demonstrate the in�uence of
the overlapping DDM together with the boundary layer iteration, cf. Section 2. Alternatively,
a resolution of the wall layer region would require a maximal aspect ratio of O(

√
Ra) for the

elements nearest to the wall. The quasi-stationary solution can be computed with relatively
large time steps.
The turbulent heat �ows (in Watt) Q̇in=W resp. Q̇out=W on the ‘cooled’ wall at y=0 and

on the ‘heated’ wall at y=1, respectively, are shown in Table I in dependence of the layer

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1527–1538
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Figure 3. Natural convection in a 3D closed cavity.

Table I. Turbulent heat �ow in dependence of layer width �.

Width � (m) 0.005 0.02 0.04 0.06 0.08 0.1
] of elements 35.924 29.535 19.382 15.778 12.436 6.485

Wall −41:6 −12:5 −6:32 −3:81 −3:29 −2:10 Q̇out=W
function 40.9 12.3 6.17 3.72 3.10 1.96 Q̇in=W

Layer −46:5 −32:1 −36:0 −33:9 −32:2 −25:2 Q̇out=W
iteration 46.3 31.5 35.3 33.4 31.8 24.7 Q̇in=W

width �. The application of the boundary layer iteration is remarkably more robust than the
application of standard wall functions.
The turbulent heat �ow data in the ‘sequential’ case agree very well with those of a parallel

computation using a coarse-granular 2× 2× 2 partition of �.
Example 2
Air �ow simulation in an o�ce with opened window. In Figure 4 we show an unfurnished
o�ce and its coarse-granular decomposition into 4 subdomains. Furthermore, di�erent variants
of an opened window and details of the surface FEM are shown. Details of the simulation
with roughly 150.000 tetrahedral elements over a period of 3:600s with time step of 1 (s) are
given in Reference [9]. Here we want to point out some interesting observations: First, the
in�ow and out�ow zones �− and �+ are well described by the boundary conditions (3), (5),
see also Figure 5. Let us mention that the solution is not disturbed by the interaction of the
window with the subdomain partition. Secondly, in comparison with the sequential solution,
we obtained a speed up of 3.76 on a cluster of 4 AMD Athlon 1 GHz processors.

As a �nal example we consider the air �ow simulation in the same o�ce with furnishing
and an partly opened window. In Figure 5 we show a snap-shot of the calculated �ow
�eld for two variants where the monitor is switched o� and on, respectively. Details of the
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Figure 4. Geometrical model and coarse-granular decomposition of an o�ce.

Figure 5. Two variants of the �ow �eld in an o�ce—enlarged view.

calculations and on the prediction of certain parameters of the indoor air climate can be found
again in Reference [9]. The comparison of the numerical results with experimental data is in
preparation.
These and other numerical results indicate that the approach is suitable for the parallel

numerical simulation of indoor air �ows in the coarse–granular case. The method is now
applied at the Dresden University of Technology to the simulation of turbulent indoor air
�ows. Such calculations allow to predict certain parameters of the indoor air climate over
longer periods and to simulate di�erent variants of ventilation or of heating systems. Future
research will be concerned with other turbulence models, improved iterative substructuring
method based on Dirichlet-Robin coupling, see Reference [1], and with coarse-grid solvers.
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